CALCULATION OF THE SECOND VARIATION IN THE PROBLEM OF THE STABILITY OF THE STEADY MOTION OF A RIGID BODY CONTAINING A LIQUID \dagger

P. CAPODANNO
Besançon Cedex

(Received 2 April 1996)

Abstract

The stability of equilibrium or of steady motion of a rigid body containing a liquid is studied. A theorem due to Rumyantsev is used to derive the sufficient condition for stability corresponding to a minimum of the variable potential energy for the transformed rigid body. A procedure is presented for expressing the second variation of the variable potential energy as a quadratic form in the parameters that define the position of the body. The calculations are substantially simplified for the problem of the stability of equilibrium or uniform rotation around a fixed axis of a rigid body with liquid in a uniform gravitational field. Rumyantsev's results are derived anew. © 1997 Elsevier Science Ltd. All rights reserved.

1. AUXILIARY FORMULA

Let Ω be a domain boundary bounded by a surface $\partial \Omega$. This domain is transformed to a nearby position Ω^{\prime}, defined by a small displacements u of the points of $\partial \Omega$.

Let $\Omega^{\prime}-\Omega$ denote the domain "swept out" by the surface $\partial \Omega$, that is, the set of points \mathbf{M}^{λ} defined by the relationship $\mathbf{O M}{ }^{\lambda}=\mathbf{O M}+\lambda \mu$, where \mathbf{M} is a point of $\partial \Omega, \mathbf{u}=\mathbf{M M} \mathbf{M}^{\prime}$ is the displacement of \mathbf{M}, λ is a parameter, $\mathbf{0}$ $<\lambda<1$, and M and u depend, say, on curvilinear coordinates α and β defined on $\partial \Omega$ and M^{λ} depends on α, β and λ.
The difference between $\Omega^{\prime}-\Omega$ and $\left(\Omega \cup \Omega^{\prime}\right)-\left(\Omega \cup \Omega^{\prime}\right)$ consists of domains which are at least three orders of magnitude smaller than $|\mathbf{u}|$.
To carry out the calculations, we refer $\partial \Omega$ to curvilinear coordinates α and β defined so that the vector product $\mathbf{M}_{\alpha} \times \mathbf{M}_{\beta}$ points along the normal to Ω. Throughout this paper, the subscripts α and β denote the appropriate partial derivatives.
Let w be a sufficiently regular function whose range of definition contains both Ω and Ω^{\prime}.
By our previous remark, if we confirm ourselves to terms of order less than or equal to two relative to \|u\|, we can write

$$
\begin{aligned}
& \int_{\Omega^{\prime}-\Omega} w d \tau=\int_{\Omega^{\prime}-\Omega} w(\mathbf{M}+\lambda \mathbf{u})\left(\mathbf{M}_{\alpha}^{\lambda}, \mathbf{M}_{\beta}^{\lambda}, \mathbf{M}_{\lambda}^{\lambda}\right) d \alpha d \beta d \lambda=\int_{\Omega^{\prime}-\Omega} w(\mathbf{M})\left(\mathbf{M}_{\alpha} \times \mathbf{M}_{\beta}\right) \cdot \mathbf{u} d \alpha d \beta d \lambda+ \\
& +\int_{\Omega^{\prime}-\Omega} \lambda\left\{(\operatorname{grad} w \cdot \mathbf{u})\left(\mathbf{M}_{\alpha}, \mathbf{M}_{\beta}, \mathbf{u}\right)+w(\mathbf{M})\left(\mathbf{M}_{\alpha} \times \mathbf{M}_{\beta}+\mathbf{u}_{\alpha} \times \mathbf{M}_{\beta}\right) \cdot \mathbf{u}\right\} d \alpha d \beta d \lambda
\end{aligned}
$$

(the subscript λ denotes partial differentiation with respect to λ).
Observing that the domain $\Omega^{\prime}-\Omega$ may be identified with $\left.\partial \Omega \times\right] 0,1$ [and that the area element $d S$ on the surface $\partial \Omega$ is $A B d \alpha d \beta$, we see that, up to terms of higher than second order in $|u|$

$$
\begin{equation*}
\left.\int_{\Omega^{\prime}-\Omega} w d \tau=\int_{\partial \Omega} w(\mathbf{M}) u_{n} d S+\frac{1}{2} \int_{\partial \Omega}[\operatorname{grad} w \cdot \mathbf{u}) u_{n}+w\left(\mathbf{u} \cdot \mathbf{n}_{1}\right)\right] d S \tag{1.1}
\end{equation*}
$$

where we have introduced the notation

$$
\begin{aligned}
& u_{n}=\mathbf{u} \cdot \mathbf{n}, \quad \mathbf{n}=\frac{\mathbf{M}_{\alpha} \times \mathbf{M}_{\beta}}{A B}, \quad \mathbf{n}_{1}=\frac{1}{A B}\left(\mathbf{M}_{\alpha} \times \mathbf{M}_{\beta}+\mathbf{u}_{\alpha} \times \mathbf{M}_{\beta}\right) \\
& A=\left|\mathbf{M}_{\alpha}\right|, \quad B=\left|\mathbf{M}_{\beta}\right|
\end{aligned}
$$

In particular, setting $w=1$, we obtain the first and second variation of the volume Ω

Fig. 1.

$$
\int_{\partial \Omega} u_{n} d S+\frac{1}{2} \int_{\partial \Omega}(\mathbf{u} \cdot \mathbf{n}) d S
$$

Throughout what follows, we retain the notation of [1], Chap. IV.

2. CALCULATION OF THE FIRST AND SECOND VARIATION OF THE VARIED POTENTIAL ENERGY FOR THE STEADY MOTION OF A RIGID BODY CONTAINING A LIQUID

Let us consider an absolutely rigid body with a simply-connected cavity of arbitrary shape containing an incompressible homogeneous ideal liquid (see Fig. 1). The position of the body and the liquid relative to a fixed system of coordinates $\mathrm{O}^{\prime} \mathrm{x}_{1}^{\prime} x_{2}^{\prime} x^{\prime}{ }_{3}$ will be defined by the coordinates of the body $q_{j}(j=1, \ldots, n-1)$ and the absolute coordinates $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ or relative coordinates x_{1}, x_{2}, x_{3} of the liquid particles. Suppose that stationary constraints imposed on the system allow the body to rotate about the x_{3}^{\prime} axis, while the given forces acting on the liquid particles admit of force functions $U_{1}\left(q_{j}\right)$ and $U_{2}\left(x_{1}, x_{2}^{\prime}, x^{\prime}\right)$ and do not produce a torque about other x_{3}^{\prime} axis. Then an energy integral and an area integral exist for the plane orthogonal to the x_{3}^{\prime} axis, and the variable potential energy is

$$
W=\frac{k_{0}^{2}}{2 I}-U_{1}-\rho \int U_{2} d \tau
$$

where k_{0} is the value of the area constant k for uniform rotation of the entire system as a single rigid body about the x_{3}^{\prime} axis at angular velocity ω, I is the moment of inertia of the system about the x_{3}^{\prime} axis, and ρ is the density of the liquid; throughout, the volume integrals are evaluated over the domain τ occupied by the liquid.

The equations of steady motion are obtained from the requirement that $\delta W=0$ provided that the volume of the liquid is constant up to first-order terms. Calculating δW, we obtain the well-known equations

$$
\begin{equation*}
\frac{k_{0}^{2}}{2 I_{0}} \frac{\partial I}{\partial q_{j}}+\frac{\partial U_{1}}{\partial q_{j}}+\rho \int \frac{\partial U_{2}}{\partial q_{j}} d \tau=0 \quad(j=1, \ldots, n-1) \tag{2.1}
\end{equation*}
$$

for the coordinates q_{j} of the rigid body in steady motion, and the equation

$$
\frac{1}{2} \omega^{2}\left(x_{1}^{\prime 2}+x_{2}^{\prime 2}\right)+U_{2}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=c_{0}\left(\omega=\frac{k_{0}}{I_{0}^{\prime}}\right)
$$

of the free surface S of the liquid in steady motion. Here I_{0} is the value of I for steady motion and the constant c_{0} is defined by the quantity of liquid in the cavity.

Let us calculate the second variation W on changing from the configuration corresponding to steady motion, for which all the q_{j} vanish, to a nearby configuration. We impart the displacement to the system as a single rigid body; the free surface of the liquid occupies a position S, and we then displace the liquid to a new position (denoting
the displacement of a point of S by \mathbf{u}). In this problem the domain "swept out" by the surface $\partial \tau$ bounding τ coincides up to infinitesimals of order at least three with the domain swept out by S; we must therefore replace $\partial \Omega$ in (1.1) (here $\partial \tau$) by S. Throughout what follows, surface integrals are evaluated over the surface S. Thus, we have

$$
\begin{aligned}
& \delta^{2} W=\frac{k_{0}^{2}}{2}\left[\frac{(\delta I)^{2}}{I_{0}^{3}}-\frac{\delta^{2} I}{I_{0}^{2}}\right]-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} U_{1}}{\partial q_{i} \partial q_{j}} q_{i} q_{j}-\frac{1}{2} \rho \int \sum_{i, j} \frac{\partial^{2} U_{2}}{\partial q_{i} \partial q_{j}} q_{i} q_{j} d \tau- \\
& -\frac{1}{2} \rho\left[\iint\left[g r a d U_{2} \cdot \mathbf{u}\right) u_{n}+U_{2}\left(\mathbf{u} \cdot \mathbf{n}_{1}\right)\right] d S
\end{aligned}
$$

Let us evaluate δI and $\delta^{2} I$. By the previous remarks, we can write

$$
I\left(q_{j}, \tau\right)-I\left(0, \tau_{0}\right)=\left[I\left(q_{j}, \tau_{0}\right)-I\left(0, \tau_{0}\right)\right]+\left[I\left(q_{j}, \tau\right)-I\left(q_{j}, \tau_{0}\right)\right]
$$

In the new position of the liquid as a rigid body we have, up to fourth-order terms

$$
x^{\prime 2}=x^{2}+\sum_{j} \frac{\partial x^{\prime 2}}{\partial q_{j}} q_{j} \quad\left(x^{\prime 2}=x_{1}^{\prime 2}+x_{2}^{\prime 2}, \quad x^{2}=x_{1}^{2}+x_{2}^{2}\right)
$$

Consequently, we can write

$$
\begin{aligned}
& \delta I=\sum_{j} \frac{\partial I}{\partial q_{j}} q_{j}+\rho J, \quad J=\iint x^{2} u_{n} d S \\
& \delta^{2} I=\frac{1}{2} \sum_{i, j} \frac{\partial^{2} I}{\partial q_{i} \partial q_{j}} q_{i} q_{j}+\rho \iint \sum_{j} \frac{\partial x^{\prime 2}}{\partial q_{j}} q_{j} u_{n} d S+\frac{1}{2} \rho \iint\left[\left(\mathrm{grad} x^{2} \cdot \mathbf{u}\right) u_{n}+x^{2}\left(\mathbf{u} \cdot \mathbf{n}_{1}\right)\right] d S
\end{aligned}
$$

A necessary condition for W to have a minimum is $\delta^{2} W \geqslant 0$ for all \mathbf{u} such that the volume of the liquid is constant

$$
\begin{gather*}
\iint u_{n} d S=0 \text { in the first approximation, } \tag{2.2}\\
\iint\left(\mathbf{u} \cdot \mathbf{n}_{1}\right) d S=0 \text { in the second approximation } \tag{2.3}
\end{gather*}
$$

Taking condition (2.3) into account, as well as the fact that $f_{0}=c_{0}$ on S and $\operatorname{grad} f_{0}=-1 \operatorname{grad} f_{0} \mid n$, since in steady motion the liquid must be on the side of the free surface where $f_{0}>c_{0}$, we obtain

$$
\begin{align*}
& \delta^{2} W=-\rho \sum_{j} \iint \frac{\partial f^{\prime}}{\partial q_{j}} q_{j} u_{n} d S+\frac{k_{0}^{2}}{2 l_{0}^{3}}\left(\sum \frac{\partial I}{\partial q_{j}} q_{j}+\rho J\right)^{2}- \\
& \left.-\frac{1}{2} \sum_{i, j}\left(\frac{k_{0}^{2}}{2 l_{0}^{3}} \frac{\partial^{2} I}{\partial q_{i} \partial q_{j}}+\frac{\partial^{2} U_{1}}{\partial q_{i} \partial q_{j}}+\rho j \frac{\partial^{2} U_{2}}{\partial q_{i} \partial q_{j}} d \tau\right) q_{i} q_{j}+\frac{1}{2} \rho \int J \operatorname{lgrad} f_{0} \right\rvert\, u_{n}^{2} d S \tag{2.4}\\
& f_{0}=\frac{k_{0}^{2}}{2 l_{0}^{2}} x^{2}+U_{2}\left(x_{i}, 0\right), \quad f^{\prime}=\frac{k_{0}^{2}}{2 l_{0}^{2}} x^{\prime 2}+U_{2}\left(x_{i}, q_{j}\right)
\end{align*}
$$

Note that $\delta^{2} W$ depends on the normal component u_{n} of u.

3. CALCULATION OF THE SECOND VARIATION OF THE VARIED ENERGY POTENTIAL FOR THE TRANSFORMED RIGID BODY

By a theorem due to Rumyantsev [1, Chap. IV, Sec. 4, Theorem VIII], a sufficient condition for the steady motion to be stable may be obtained by determining the minimum of W for the configuration bounded by the surface S^{\prime}

$$
\frac{k_{0}^{2}}{2 I\left(q_{j}, \tau\right)} x^{\prime 2}+U_{2}\left(x_{i}, q_{j}\right)=c
$$

where the constant c is defined by the amount of liquid in the cavity of the body corresponding to the transformed rigid body.

We will show that if the point x_{i} describes S, then the point $x_{i}+u_{n} n_{i}$ will describe S^{\prime} in the first approximation. Indeed, in the first approximation

$$
\begin{aligned}
& U_{2}\left(x_{i}+u_{n} n_{i}, q_{j}\right)=U_{2}\left(x_{i}, 0\right)+u_{n} \operatorname{grad} U_{2}\left(x_{i}, 0\right) \cdot \mathbf{n}+\sum_{j}\left(\frac{\partial U_{2}\left(x_{i}, q_{j}\right)}{q_{j}}\right)_{0} q_{j} \\
& x^{\prime 2}\left(x_{i}+u_{n} n_{i}, q_{j}\right)=x^{2}+u_{n} \operatorname{grad} x^{2} \cdot \mathbf{n}+\sum_{j}\left(\frac{\partial x^{\prime 2}}{\partial q_{j}}\right)_{0} q_{j}
\end{aligned}
$$

On the other hand, we can write

$$
\frac{k_{0}^{2}}{2 I^{2}\left(q_{j}, \tau\right)}=\frac{k_{0}^{2}}{2 I_{0}^{2}}-\frac{k_{0}^{2}}{I_{0}^{3}} \delta I+\ldots
$$

Substituting this into the equation for S^{\prime}, we obtain

$$
c-c_{0}=-\operatorname{lgrad} f_{0} \left\lvert\, u_{n}+\sum_{j}\left(\frac{\partial f^{\prime}}{\partial q_{j}}\right)_{0} q_{j}-\frac{k_{0}^{2}}{I_{0}^{3}} x^{2}\left[\sum_{j}\left(\frac{\partial I}{\partial q_{j}}\right)_{0} q_{j}+\rho J\right]\right.
$$

This equation defines an expression for the component u_{n}, which depends linearly on $c-c_{0}$ and the integral J. Multiplying by x^{2} and integrating with respect to S, we obtain this integral as a function of q_{j} and $c-c_{0}$

$$
\begin{aligned}
& J=\frac{I_{0}^{3}}{K\left(x_{1}, x_{2}\right)}\left[-\left(c-c_{0}\right) \iint Q d S+\sum_{j}\left\{\iint\left[\left(\frac{\partial f^{\prime}}{\partial q_{j}}\right)_{0}-\frac{k_{0}^{2}}{I_{0}^{3}} x^{2}\left(\frac{\partial I}{\partial q_{j}}\right)_{0}\right] Q d S\right\} q_{j}\right] \\
& K\left(x_{1}, x_{2}\right)=I_{0}^{3}+k_{0}^{2} \rho \iint \frac{x^{4}}{\left|\operatorname{grad} f_{0}\right|} d S, \quad Q\left(x_{1}, x_{2}\right)=\frac{x^{2}}{\left|\operatorname{grad} f_{0}\right|}
\end{aligned}
$$

Substituting this relationship into the expression for u_{n}, we obtain

$$
u_{n}=A\left(x_{1}, x_{2}\right)\left(c-c_{0}\right)+\sum_{j} B_{j}\left(x_{1}, x_{2}\right) q_{j}
$$

where

$$
\begin{aligned}
& A\left(x_{1}, x_{2}\right)=\frac{k_{0}^{2} Q}{K\left(x_{1}, x_{2}\right)} \iint Q d S-\left.\operatorname{lgrad} f_{0}\right|^{-1} \\
& B_{j}\left(x_{1}, x_{2}\right)=\left(\frac{\partial f^{\prime \prime}}{\partial q_{j}}\right)_{0} \operatorname{lgrad} f_{0} I^{-1}-\frac{k_{0}^{2} Q}{K\left(x_{1}, x_{2}\right)} \iint\left(\frac{\partial f^{\prime \prime}}{\partial q_{j}}\right)_{0} Q d S \\
& f^{\prime \prime}=f^{\prime}-\frac{k_{0}^{2}}{I_{0}^{3}} x^{2} I
\end{aligned}
$$

and x_{3} is expressed on S as a function of x_{1} and x_{2}.
Using (2.2), we find that

$$
c-c_{0}=-\sum_{j} \frac{\iint B_{j} d S}{\iint A d S} q_{j}
$$

and, finally

$$
u_{n}=\sum_{j}\left[B_{j}\left(x_{1}, x_{2}\right)-A\left(x_{1}, x_{2}\right) \frac{\iint B_{j} d S}{\iint A d S}\right] q_{j}
$$

Thus, u_{n} is a linear form in q_{j}, whose coefficients are functions of the coordinates x_{1} and x_{2} of the points of S.

Substituting the value of u_{n} into expression (2.4) for $\delta^{2} W$, we obtain a quadratic form in the parameters q_{j}. The requirement that this form be positive definite yields sufficient conditions for the steady motion to be stable.

4. EXAMPLE. STABILITY OF THE UNIFORM ROTATION OF A RIGID BODY WITH A FIXED POINT AND A CAVITY CONTAINING A LIQUID IN A GRAVITATIONAL FIELD ([1], CHAP. IV, SEC. 6)

Consider a rigid body with one fixed point O and a cavity containing a liquid in a uniform gravitational field. We will assume that the x_{3}^{\prime} axis passes through the body's centre of gravity.

Using the notation of [1], we obtain

$$
\begin{aligned}
& U=-M g\left(x_{c 1} \gamma_{1}+x_{c 2} \gamma_{2}+x_{c 3} \gamma_{3}\right) \\
& I=A \gamma_{1}^{2}+B \gamma_{2}^{2}+C \gamma_{3}^{2}-2 D \gamma_{2} \gamma_{3}-2 E \gamma_{3} \gamma_{1}-2 F \gamma_{1} \gamma_{2} \\
& \gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=1
\end{aligned}
$$

where M is the mass of the system, $x_{c i}(=1,2,3)$ are the coordinates of its centre of mass, γ is the unit vector along the upward vertical, and A, B, C, D, E and F are the moments of inertia of the system about the x_{i} axes and the centrifugal moments of inertia.

The equations of steady motion are

$$
\frac{1}{2} \omega^{2} \frac{\partial I}{\partial \gamma_{i}}+\frac{\partial U}{\partial \gamma_{i}}=0, \quad i=1,2
$$

Let us consider the solution

$$
\gamma_{1}=\gamma_{2}=0, \quad \gamma_{3}=1 ; \quad x_{c 1}=x_{c 2}=0, \quad x_{c 3}=x_{c 3}^{0} ; \quad D=E=0
$$

on the assumption that $F=0$, so that x_{1}, x_{2} and x_{3} are the principal axes of inertia of the system in steady motion.
In this case the free surface S of the liquid is a paraboloid of revolution

$$
1 / 2 \omega^{2} x^{2}-g x_{3}=c_{0}
$$

where c_{0} is a constant which depends on the volume of the liquid.
Let us assume that the projection of the free surface S onto the $x_{1} O x_{2}$ plane is a circular annulus of radii R_{1} and $R_{2}\left(R_{1}>R_{2}\right)$. Calculation of $\delta^{2} W$ by formula (2.4) produces an expression identical with that obtained previously [1, p. 208, formula (4.71)].

We now calculate $\delta^{2} W$ for the transformed rigid body. First

$$
\begin{align*}
& u_{n}=-\frac{1}{\omega^{2} G}\left[c-c_{0}+\left(\omega^{2} x_{3}+g\right)\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right)+\frac{\rho \omega^{2} x^{2}}{I_{0}} \iint x^{2} u_{n} d S\right] \tag{4.1}\\
& \left(G=\left(x^{2}+\omega^{-4} g^{2}\right)^{1 / 2}\right)
\end{align*}
$$

Multiplying both sides of this equality by x^{2}, integrating with respect to S and noting that, by the symmetry of the rotation

$$
\iint\left(\omega^{2} x_{3}+g\right)\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right) G^{-1} d S=0
$$

we obtain an expression for the integral occurring in (4.1), substitution of which into (4.1) gives

$$
u_{n}=A\left(x_{1}, x_{2}\right)\left(c-c_{0}\right)-\left(\omega^{2} x_{3}+g\right)\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right) /\left(\omega^{2} G\right)
$$

Taking condition (2.2) into consideration and again using the symmetry of the rotation, we obtain $c-c_{0}=0$ and

$$
u_{n}=-\left(\frac{\omega^{2}}{2 g} x^{2}-\frac{c_{0}}{g}+\frac{g}{\omega^{2}}\right)\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right) G^{-1}
$$

We now return to the expression for $\delta^{2} W$.
Together with the expression obtained for u_{n}, we have $\iint x^{2} u_{n} d S=0$, and after computing the integral (by changing to polar coordinates in the $x_{1} O x_{2}$) plane, we obtain Rumyantsev's original formula [1]

$$
\begin{align*}
& \delta^{2} W=-\frac{1}{2}\left\{\left[\omega^{2}(A-C)+M g x_{c 3}^{0}\right] \gamma_{1}^{2}+\left[\omega^{2}(B-C)+M g x_{c 3}^{0}\right] \gamma_{2}^{2}\right\}+ \\
& \left.+\frac{1}{2} \pi \rho g \int_{R_{2}}^{R_{1}}\left[\frac{\omega^{2}}{g^{2}}\left(\frac{1}{2} \omega^{2} r^{2}-c_{0}\right)+1\right)\right]^{2} r^{3} d r\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right) \tag{4.2}
\end{align*}
$$

which enables us to analyse the stability of the steady motion.
Following Rumyantsev, let us consider a case in which the angular velocity of rotation is very large. Then the free surface S of the liquid in steady motion is a circular cylinder $x^{2}=b^{2}$, and after calculations using formula (2.4) we obtain an expression differing from (4.2) in the integral term, which is now

$$
\rho \omega^{2} \iint x_{3}\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right) u_{n} d S+\frac{1}{2} \rho \omega^{2} b \iint u_{n}^{2} d S
$$

We now calculate $\delta^{\mathbf{2}} W$ for the transformed rigid body.
The calculation of u_{n} is simplified. Defining on S

$$
x_{1}=b \cos \theta, \quad x_{2}=b \sin \theta
$$

and assuming that S cuts the surface of the cavity in circles with centres on the x_{3} axis at points with coordinates $x_{3}=h \pm d$, we see, proceeding as before, that

$$
u_{n}=-x_{3}\left(\gamma_{1} \cos \theta+\gamma_{2} \sin \theta\right)
$$

Substitution into the expression $\delta^{2} W$ again yields Rumyantsev's result [1].

5. THE EQUILIBRIUM CASE. EXAMPLE

In the equilibrium case, the computations are much simpler.
The equations of equilibrium are

$$
\frac{\partial U_{1}}{\partial q_{j}}+\rho \int \frac{\partial U_{2}}{\partial q_{j}} d \tau=0, \quad j=1,2, \ldots, n ; \quad U_{2}=c_{0}
$$

We must set $k_{0}=0$ in expression (2.4) for $\delta^{2} W$ and in the formulae of Section 3; then $f_{0}=U_{2}\left(x_{i}, 0\right), f^{\prime}=f^{\prime \prime}=$ $U_{2}\left(x_{i}, q_{j}\right)$.
Let us consider Rumyantsev's example of the equilibrium of a rigid body with one fixed point and a cavity containing a liquid in a gravitational field.

Consider the solution

$$
\gamma_{1}=\gamma_{2}=0, \quad \gamma_{3}=1 ; \quad x_{c 1}=x_{c 2}=0, \quad x_{3}=x_{3}^{0}
$$

Using the expressions

$$
U_{2}=-g x_{3}^{\prime}=-g\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}+x_{3}\left(1-\gamma_{1}^{2}-\gamma_{2}^{2}\right)^{1 / 2}\right), \quad U_{1}=-M_{1} g x_{13}\left(1-\gamma_{1}^{2}-\gamma_{2}^{2}\right)^{1 / 2}
$$

where M_{1} is the mass of the rigid body and x_{13} is the height of its centre of gravity in the equilibrium position, we obtain

$$
\delta^{2} W=\rho g \iint\left(x_{1} \gamma_{1}+x_{2} \gamma_{2}\right) u_{n} d S-\frac{1}{2}\left[M_{1} g x_{13}+\rho g \int x_{3}^{\circ} d \tau\right]\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)+\frac{1}{2} \rho g \iint u_{n}^{2} d S
$$

We now evaluate u_{n} and, as before, retrieve Rumyantsev's result.

REFERENCE

1. MOISEYEV, N. N. and RUMYANTSEV, V. V., Dynamics of a Body with Cavities Containing a Liquid. Nauka, Moscow, 1965.
