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The stability of equilibrium or of steady motion of a rigid body containing a liquid is studied. A theorem due to Rumyantsev is 
used to derive the suflkient condition for stability con'ospondin~ to a minimum of the variable potential ener~ for the transformed 
rigid body. A procedure is presented for expressing the second variation of the variable potential energy as a quadratic form in 
the parameters that define the position of the body. The calculations are substantially simplified for the problem of the stability 
of equih'brium or uniform rotation around a fixed axis of a rigid body with fiqnid in a uniform gravitational field. Rumyantsev's 
results are derived anew. © 1997 Elsevier Science Ltd. All rights reserved. 

1. A U X I L I A R Y  F O R M U L A  

Let gl be a domain boundary bounded by a surface Ofl. This domain is transformed to a nearby position ~ ' ,  defined 
by a small dispiacements u of the points of 0tl. 

Let  ~ '  - f l  denote the domain "swept out" by the surface i ~ ,  that is, the set of points M x defined by the 
relationship OM g = OM + 7gt, where M is a point of ~-1, u = MM' is the displacement of M, g is a parameter, 0 
< g < 1, and M and u depend, say, on eurvilinear coordinates 0t and ~ defined on 0fl and M ~ depends on 0g 
and ~. 

The difference between f~' - f l  and (f l  U fl ' )  - ( ~  U ~ consists of domains which are at least three orders of 
magnitude smaller than I u I. 

To carry out the calculations, we refer 0fl  to curvilinear coordinates ~t and 15 defined so that the vector product 
M a x  M¢ points along the normal to f~. Throughout this paper, the subscripts a and [~ denote the appropriate 
partial  derivatives. 

Let  w be a sufficiently regular function whose range of definition contain.~ both f l  and f~'. 
By our previous remark, if we confirm ourselves to terms of order less than or equal to two relative to I n I, we 

can write 

I wdx= I w(M+Xu)(M~, M~, MxX)dczd{~L= I w(M)(Ma xMl~)'udczd~/X+ 
fl'-f~ ~'-f~ f~,_f~ 

+ ~ ~,{(grad w.u)(M a,  MI3, u )+w(M)(M a XMl~ +u a xMi3).u}dcxdl]ffL 
IY-f~ 

(the subscript X denotes partial differentiation with respect to X). 
Observing that the domain f l '  - ~2 may be identified with 0t2 x ]0,1[ and that the area element dS on the surface 

0fl  isABdad[3, we ,,ee that, up to terms of higher than second order in I u I 

wdx= ~ w(M)undS+ I ~ tgrad w.u)u n +w(u.n,)]dS 
f2"-• 3f~ 

(1.1) 

where we have introduced the notation 

M a x  M S 1 
u n = u . n ,  n =  A-----B--' n I = ~ ( M ~  xM[3 +u a xMi3) 

A=lMal, B=IM~I 

In particular, setting w = 1, we obtain the first and second variation of the volume f l  
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Fig. L 

undS+ 1 ~ (u.n)dS 
a~ 2 a~ 

Throughout what follows, we retain the notation of [1], Chap. 

2. C A L C U L A T I O N  O F  T H E  F I R S T  A N D  S E C O N D  V A R I A T I O N  O F  T H E  
V A R I E D  P O T E N T I A L  E N E R G Y  F O R  T H E  S T E A D Y  M O T I O N  O F  

A R I G I D  B O D Y  C O N T A I N I N G  A L I Q U I D  

Let us consider an absolutely rigid body with a simply-connected cavity of  arbitrary shape containing an 
incompress~le homogeneous ideal liquid (see Fig. 1). The position of the body and the liquid relative to a fixed 
system of coordinates O'x'ff'2z'3 will be defined by the coordinates of the body qj (j ffi 1 . . . . .  n - 1 ) and the absolute 
coordinates x'l, x'2, x's or relative coordinates x~, x2, x3 of the liquid particles. Suppose that stationary constraints 
imposed on the system allow the body to rotate about the x'  3 axis, while the given forces acting on the liquid particles 
admit of force functions Ux(qi) and U2(xl,x'2,x'3) and do not produce a torque about otherx '  3 axis. Then an energy 
integral and an area integral exist for the plane orthogonal to the x" 3 axis, and the variable potential energy is 

w =  kA-v,-pf 
21 

where k0 is the value of the area constant k for uniform rotation of the entire system as a single rigid body about 
the x'  3 axis at angular velocity to, I is the moment of inertia of the system about the x'~ axis, and p is the density of 
the liquid; throughout, the volume integrals are evaluated over the domain x occupied by the liquid. 

The equations of steady motion are obtained from the requirement that ~iW = 0 provided that the volume of 
the liquid is constant up to first-order terms. Calculating ~W, we obtain the well-known equations 

k 2 c31 ~)U 1 , OU 2 _ 
~ + ~ + 9 J  ~ a x = O  ( j = l  . . . . .  n - l )  (2.1) 

2/0 Oqj Oqj Oqj 

for the coordinates qj of the rigid body in steady motion, and the equation 

1_2 .  ,2 , , ( ) "~tO ~X I +x~2)+U2(xI,  x2, X~)=c 0 CO= kO 
" ~, tO) 

of the free surface S of the liquid in steady motion. Here I0 is the value of I for steady motion and the constant Co 
is defined by the quantity of liquid in the cavity. 

Let us calculate the second variation W on changing from the configuration corresponding to steady motion, 
for which all the qj vanish, to a nearby configuration. We impart the displacement to the system as a single rigid 
body;, the free surface of the liquid occupies a position S, and we then displace the liquid to a new position (denoting 
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the displacement of a point of S by u). In this problem the domain "swept out" by the surface ~ bounding x coincides 
up to infinitesimals of order at least three with the domain swept out by S; we must therefore replace ~K~ in (1.1) 
(here ~x) by S. Throughout what follows, surface integrals are evaluated over the surface S. Thus, we have 

ko : 1 ]  l _  : u ,  1 , ._ 1~2W=TL' ~ ~ J-7~ ~qiqJ--2PJ ~ ~ qiqjaz- 
. - lp [ I I  [gradU2.u)u n +U2(u.nl)]dS 

Let us evaluate 5/and 82/. By the previous remarks, we can write 

l(qj, x)- l (0 ,  Xo)=[l(qj, Xo)-l(0, Xo)]+[l(q), "O-l(qj, Xo)] 

In the new position of the liquid as a rigid body we have, up to fourth-order terms 

0x ,2 
j Oqj qs 

Consequently, we can write 

at= Z -~ qs +ps, s = td x2u.dS 
J 

221 Ox '2 1 . 821=!~ ~qiqj+PSS ~ "~qjqjundS+~pJJ [(gradx2"U)Un+X2(u'nl'] ds 

A necessary condition for W to have a minimum ~ 8ZW ~> 0 for all u such that the volume of the liquid is 
constant 

J funds = 0 in the first approximation, (2.2) 

J(u- nOdS ffi 0 in the second approximation (2.3) 

"]hking condition (2.3) into account, as well as the fact that f0 = Co on S and grad f0 = -I grad f0 In, since in steady 
motion the liquid must be on the side of the free surface where f0 > Co, we obtain 

0f k 0  i2w=-pZ, H b- qq:.ds+ X qj+ps - 

-iz ( ° 2 !  • : "  
2 i,j t 2-1~ OqiOq I I"~ ''m ~ a ' ~  fl qiqj +7  pjs Igrad folu~dS (2.4) 

2 2 
- k0 X2 , k0 ,2 

f o , ' ~ O  +U2(x i, 0), f =-T-~,2 +U2(x i, qj) 

Note that 82W depends on the normal component u~ of u. 

3. C ' A L C U L A T I O N  OF T H E  S E C O N D  V A R I A T I O N  OF T H E  
V A R I E D  E N E R G Y  P O T E N T I A L  F O R  T H E  T R A N S F O R M E D  

R I G I D  B O D Y  

By a theorem due= to Rumyantsev [1, Chap. I~, Sec. 4, Theorem VIII], a sufficient condition for the steady 
motion to be stable may be obtained by determining the minimum of W for the configuration bounded by the 
surface S' 

k2 x "2 +U 2(xi, q j )=c  
2l(qj,  "f) 

where the constant c is defined by the amount of liquid in the cavity of the body corresponding to the transformed 
rigid body. 

We will show that if the pointxi describes S, then the pointxi + u~ni will describe S' in the first approximation. 
Indeed, in the first approximation 
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U2(xi+unni, qj)=U2(xi, O)+un grad U2(xi, O).n+X ( ~u2(xi" qJ)l qj 
J qJ o 

x'X(xi+unni, qj):x2+ungradxX.n+~j t,~qj )oqJ 
On the other hand, we can write 

k2 2 2 

212(qj, "t) 21~ 2 I~ 3 "" 

Substituting this into the equation for S', we obtain 

c-c°=-'gradf°lun+'~'(~f'lj [, c3qj )0 qj -'~-~'32 2 Y. (~,)~qj +PJ] 
"0 L j o qj 

This equation defines an expression for the component un, which depends linearly on c - Co and the integral Y. 
Multiplying by x 2 and integrating with respect to S, we obtain this integral as a function of q/and c - Co 

J= 13 [-(C-Co),, QdS+Y~ {,, [ (~ f ' l  -k2~O3x2(~-~l I ]QdSlqi] 
K(x" x2) J L~aqj)o 10 ~oqj)o J J "J 

x 4 x 2 X(x,. x~)=~+~pH ~ d s ,  O.(x,, x~)= 
igrad fo----- ~ 

Substituting this relationship into the expression for un, we obtain 

u n =A(x l, x2)(C-Co)+ ~ Bj(Xl, x2)qj 
J 

where 

k2Q ) [[ QdS-Igrad fo t-I A(x I, x2)= K(Xl ' x 2 

@ ss 
K(x,,x~) t~)o 

2 . - , , _ -  ko 2- I - I - - ~ - ~  x / 

andx3 is expressed on S as a function ofxl and Xe. 
Using (2.2), we find that 

and, finally 

H~ds 

J 

ffBjdsl 
U n =~j Bj(Xl' x2)-A(x l, ~2)l-'f-'~Jq: 

Thus, un is a linear form in qj, whose coefficients are functions of the coordinates xl and x2 of the points 
of S. 

Substituting the value of u, into expression (2.4) for sew, we obtain a quadratic form in the parameters q~. 
The requirement that this form be positive definite yields sufficient conditions for the steady motion to 1~ 
stable. 
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4. E X A M P L E .  S T A B I L I T Y  OF T H E  U N I F O R M  R O T A T I O N  OF A R I G I D  
B ODY W I T H  A F I X E D  P O I N T  AND A CAVITY C O N T A I N I N G  A L I Q U I D  

IN A G R A V I T A T I O N A L  F I E L D  ([1] ,  CHAP.  IV, SEC.  6) 

Consider a rigid body with one fixed point 0 and a cavity containing a liquid in a uniform gravitational field. 
We will assume tha~t the x'3 asis passes through the body's centre of gravity. 

Using the notation of [1], we obtain 

U = - n g ( x c l T i  + Xc2T2 + Xc373) 

I=A721 + BY2~ + C"Y 2 -2/37273 -2EY371 -2FTI72 
72 2 2 +72 +~,/3 =1 

where M is the mass of the system, x a ( = 1, 2, 3) are the coordinates of its centre of mass, T is the unit vector along 
the upward vertical, andA, B, C,D,E and F are the moments of inertia of the system about thexi axes and the 
centrifugal moments of inertia. 

The equations of steady motion are 

Let us consider the solution 

3'1 =72 =0, 

1 2  ~I ~)U 
-co ~+~=0, i=l, 2 
2 ayi avi 

"/3 =1; Xcl=Xc2=O, Xc3=X03; D - - E - - 0  

on the assumption that F = 0, so tha t  x1 ,x  2 andx3 are the principal axes of inertia of the system in steady motion. 
In this case the free surface S of the liquid is a paraboloid of revolution 

I~CO2X2 - gX 3 ffi c O 

where Co is a constamt which depends on the volume of the liquid. 
Let us assume that the projqction of the free surface S onto the XlOX2 plane is a circular annulus of radii R1 and 

R2 (R1 > R2). C.alodation of 8"Why formula (2.4) produces an expression identical with that obtained previously 
[1, p. 208, formula (4.71)1. 

We now calculate 8"W for the transformed rigid body. First 

(G=(x 2 + co--4g2 )~ ) 

Multiplying both sidles of this equality by x 2, integrating with respect to S and noting that, by the symmetry of the rotation 

f~(co2x3 +g)(XlTI +x272)G-IdS=O 

we obtain an expression for the integral occurring in (4.1), substitution of which into (4.1) gives 

U n = A(Xl, x2 ) (c -co) - (co2x3  +g)(xl71 +x272)/(CO2G) 

qkking condition~ (2.2) into consideration and again using the symmetry of the rotation, we obtain c - Co = 0 and 

2 c0 + g...g - (XlTI )G -1 

We now remm to the expression for 82W. 
Together with the expression obtained for un, we have ~ Jx2undS = 0, and after computing the integral Coy changing 

to polar coordinates in the xlOx2) plane, we obtain Rumyantsev's original formula [1] 

5 2 w = - l  t[co2(A-C)+Mgx°c3]T2 +tco2(B-C)+Mgx°3]T2}+ 

+lgpg~l[co2(lco2r2-co)+l)]2r3dr(72+T 2 ) (4.2) 
2 R2[gZL2 
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which enables us to analyse the stability of the steady motion. 
Following Rumyantsev, let us consider a case in which the angul~ velocity of rotation is very large. Then the 

free surface S of the liquid in steady motion is a circular cylinder x" = b 2, and after calculations using formula 
(2.4) we obtain an expression differing from (4.2) in the integral term, which is now 

P 032 Sf X3 (XI'Yi + x2"/2 )uadS+~PC°2bJ'J " u2dS 

We now calculate 82W for the transformed rigid body. 
The calculation of u. is simplified. Defining on S 

x I=bcos0, x 2=bsinO 

and assuming that S cuts the surface of the cavity in circles with centres on the x 3 axis at points with coordinates 
x3 = h --+ d, we see, proceeding as before, that 

u, = -x3 (Yl cos0+ ¥2 sin0) 

Substitution into the expression 82Wagain yields Rumyantsev's result [1]. 

5. T H E  E Q U I L I B R I U M  CASE.  E X A M P L E  

In the equilibrium case, the computations are much simpler. 
The equations of equih~orium are 

~Ui ~pf ~U2a~ 
~q--'T" ~ =0, j = l ,  2 . . . . .  n; U2=c 0 

We must set/Co = 0 in expression (2.4) for •2W and in the formulae of Section 3; then f0 = Uz(xi, O),f' = . f"  = 
U2(xi, qj). _ 
Let us consider Rumyantsev's example of the equilibrium of a rigid body with one fixed point and a cavity 

containing a liquid in a gravitational field. 
Consider the solution 

yi=Y2=0, Y3=l; xcl=xc2=O, x3=x 0 

Using the expressions 

U 2 =-gx~ =-g(xly  I +x2Y 2 +x3( I -y~- ' /2 )~) ,  UI :-MlgXl3( I_Y2_Y~)~2 

where M1 is the mass of the rigid body a n d  x13 is the height of its centre of gravity in the equilibrium position, we 
obtain 

~2W=pgI~(XlYI+X2Y2)undS-I[MlgXl3 + Pgl x;d'~](Y 2 +y2 )+Tpg H 1  .2dS 

We now evahmte un and, as before, retrieve Rumyantsev's result. 
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